
Time-aware Multi-interest Capsule Network for Sequential Recommendation

Zhikai Wang∗ Yanyan Shen†

Abstract

In recent years, sequential recommendation has been widely

researched, which aims to predict the next item of interest

based on user’s previously interacted item sequence. Many

works use RNN to model the user interest evolution over

time. However, they typically compute a single vector as the

user representation, which is insufficient to capture the vari-

ation of user diverse interests. Some non-RNN models em-

ploy the dynamic routing mechanism to automatically vote

out multiple capsules that represent user’s diverse interests,

but they are ignorant of the temporal information of user’s

historical behaviors, thus yielding suboptimal performance.

In this paper, we aim to establish a time-aware dynamic

routing algorithm to effectively extract temporal user mul-

tiple interests for sequential recommendation. We observe

that the significance of an item to user interests may change

monotonically over time, and user interests may fluctuate

periodically. Following the intuitive temporal patterns of

user interests, we propose a novel time-aware multi-interest

capsule network named TAMIC that leverages two kinds of

time-aware voting gates, i.e., monotonic gates and periodic

gates, to control the influence of each interacted item on

user’s current interests during the routing procedure. We

further employ an aggregation module to form a temporal

multi-interest user representation which is used for next item

prediction. Extensive experiments on real-world datasets

verify the effectiveness of the time gates and the superior

performance of our TAMIC approach on sequential recom-

mendation, compared with the state-of-the-art methods.

1 Introduction

In decades, the rapid development of the e-commerce
industry has spawned an increasing demand for person-
alized recommendation. In addition to the traditional
setting that treats recommendation as a matrix comple-
tion problem, recent researches have devoted efforts to
the sequential recommendation problem [13, 19].

A large number of works [15, 10] utilized recurrent
neural networks (RNNs) to model user interests evolv-
ing in the passage of time. While achieving encourag-
ing recommendation performance, existing RNN-based
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methods only capture one user interest by referring to
the last item’s hidden state [10] or performing aggre-
gation over all the hidden states of the items in the
sequence [24]. The single user interest representation is
then used for the prediction of the next item. In prac-
tice, a user may have multiple interests encoded in the
historical behaviors, but RNNs are incapable of mod-
eling and distinguishing user’s diverse interests, thus
yielding suboptimal performance [4].

Recent works [4, 14] adopted the capsule net-
works [20] and employed the dynamic routing mecha-
nism to automatically vote out several significant user
interests based on the interacted items in user’s his-
torical behaviors. The obtained multiple user interests
have proved beneficial to the final recommendation per-
formance [14]. And these methods decouple the process
of inferring user behavior representations and measur-
ing user-item correlations, providing high efficiency for
the matching stage with billion-scale items. However,
existing capsule network based methods completely ig-
nore the temporal information such as the timestamps
of individual interactions and the time intervals between
consecutive interactions. As a result, two user behav-
ior sequences involving the same set (or multiset) of
items but with different item orders or time intervals
would derive the same user multi-interest representa-
tion, which is counter-intuitive and faces the risk of in-
formation loss. Hence, applying capsule networks for
sequential recommendation needs further consideration.

Previous works [2, 6] tried to explicitly incorporate
temporal information into the sequence modeling. Some
of them [3] simply treated the timestamp of each in-
teraction as an additional feature, while others [6] ex-
plored the influence of different time intervals on next
item prediction. Nevertheless, the proposed time-aware
deep models can be regarded as the enhancements of
RNN-based or self-attention-based methods for sequen-
tial recommendation. They generally rely on the se-
quential structure of RNN or the positional encoding in
self-attention to model temporal user interests. Unfor-
tunately, existing techniques cannot directly apply to
capsule networks due to the architecture difference.

In this paper, we aim to establish a time-aware
multi-interest capsule network for sequential recommen-
dation which enhances the dynamic routing mechanism
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with temporal information to capture temporal multi-
ple interests of users. Our work is motivated by the
following key observations. First, the significance of an
item to user interests may change monotonically over
time. For example, a user who has a great passion on a
new-series of toys might become less interested in them
a few months later, indicating the user’s interest on toys
decays. Meanwhile, some try-on products that were ini-
tially purchased with a small quantity may suddenly
become user’s favorites and even dominate over other
interests for a long time, exhibiting an enhancing trend
on the interest. In either way, during the dynamic rout-
ing procedure, the timestamp of an interacted items im-
ply its significance to user’s current interests. Second,
user interests may fluctuate seasonally or periodically
at different frequencies and phases. For example, peo-
ple would like buy more T-shirts in summer but more
coats in winter. The basic necessities such as tooth-
paste will be purchased repeatedly over relatively fixed
periods of time. In order to learn more accurate user in-
terests from interacted items, it is plausible to allow an
interest to be extracted from selective items appeared
at a certain frequency and phase.

Following our observations, we design two kinds of
time-aware voting gates, monotonic gates and periodic
gates, to control the voting signals from items to high-
level interests based on their timestamps. Specifically,
the monotonic gates change monotonically according
to the time interval between the target item and the
controlled items, while the periodic gates fluctuate
periodically over time with different periods and phases.
We integrate the two kinds of gates into the dynamic
routing procedure, and develop a Time-Aware Multi-
Interest Capsule network (TAMIC for short) which is
effective to capture both multiple user interests and
temporal information for sequential recommendation.
Extensive experimental results on real-world datasets
verify the effectiveness of the two kinds of gates and
the superior performance of our proposed TAMIC.
To summarize, this paper makes the following major
contributions.

• We propose to enhance the dynamic routing mech-
anism to incorporate temporal information for
multi-interest-based sequential recommendation.

• We design two kinds of time-aware voting gates
to capture the monotonic and periodic patterns in
user interests, which can be seamlessly applied to
capsule-network-based recommendation models.

• We conduct extensive experiments on three real
datasets, the results on which demonstrate that
our proposed TAMIC achieves 2.52%-5.18% higher
NDCG than the state-of-the-art approaches [4, 23]
and the two kinds of gates are effective to extract

temporal multiple interests of users.

2 Related Work

Sequential recommendation attempts to learn user
representations from historical item interaction se-
quences [13, 15, 19]. GRU4Rec [10] leverages Recur-
rent Neural Network (RNN) to capture sequential be-
havioral patterns of users. ACVAE [23] proposes us-
ing VAE to generate high-quality item representations
and capture global and local item correlations in the se-
quence. However, the above methods all preserve one
single latent vector for each user, which is insufficient to
capture the variation of user’s diverse interests [14, 18].
Besides, they ignore the time information involved in
the user behavior sequences, thus yielding suboptimal
performance. Recently, some researches [18, 25] have
utilized capsule networks to capture user’s diverse inter-
ests. The capsule network [20] was firstly used for im-
age classification. It uses vectorized capsules to replace
scalar neurons in neural networks and employs the dy-
namic routing mechanism based on a similarity metric
to form capsules. Inspired by the high expressiveness of
capsule networks, MIND [14] performs dynamic rout-
ing to extract user’s high-level multi-interest capsules
from the raw user behavior sequence for item recommen-
dation. ComiRec [4] is another capsule-network-based
sequence recommendation model, which optimizes the
dynamic routing process and introduces a controllable
method for interest selection. Unfortunately, the above
methods fail preserve the sequential order among inter-
actions and lack the ability of utilizing temporal infor-
mation for sequential recommendation.

The temporal information including both the times-
tamps of individual interactions and the time intervals
provides critical clues on the item to be interacted next.
Various works have tried to exploit temporal informa-
tion to boost the performance of sequential recommen-
dation [1, 2, 6]. However, existing time-aware deep
models typically treat timestamp as a context feature
of interactions and cannot model monotonic or periodic
patterns of temporal user interests explicitly.

3 Notations and Problem

Typically, a recommendation dataset consists of inter-
action records between a set U of users and a set I of
items. Each interaction can be represented as a triplet
(u, i, t), where u ∈ U is a user id, i ∈ I is an item id, and
t is a UNIX timestamp. LetA = {(u, i, t)} denote all the
interactions in the dataset. In the sequential recommen-
dation setting, each instance consists of two parts. The
output part is the triplet (u, ia, ta) describing that the
user u interacts with the target item ia ∈ I at the times-
tamp ta. The input part is u’s historical behaviors which
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is a sequence of u’s previously interacted items ordered
by timestamp, denoted as Su = {i | (u, i, t) ∈ A, t < ta}.

In practice, the sequential recommendation aims to
find the top-N candidate items based on user’s historical
behaviors. More specifically, we want to learn a function
fuser which can map a user’s historical behaviors Su into
a multi-interest user representation Hu:

(3.1) Hu = fuser(Su) = (hu,1, · · · ,hu,K) ∈ Rd×K

where hu,k denotes the vector of the kth interest of u
(k ∈ [1,K]), K is the total number of user interests, and
d is the dimension of each interest vector. The top-N
candidate items are retrieved using a scoring function:

(3.2) fscore(Hu, ei)

where ei ∈ Rd×1 denotes the embedding of item i ∈ I.
In what follows, we omit the subscription u when the
context is clear.

4 Methodology

4.1 Embedding Module The input to this module
is the user behavior sequence Su and the target item
ia. This module implements an embedding layer that
converts the one-hot vector xi of item i ∈ I into a low-
dimensional embedding ei, which is defined as follows:

(4.3) ei = W embxi

where W emb ∈ Rd×|I| is the embedding matrix, and d
denotes the embedding dimension. Henceforth, we use
Eu = {ei | (u, i, t) ∈ Su} to denote the the set of items
involved in the user behavior sequence Su, and use ea
to denote the target item embedding.

4.2 Time-aware Multi-interest Learning In
MIND [14] and ComiRec [4], they used dynamic
routing mechanism to extract user’s time-irrelevant
multi-interest representation. However, as we have
mentioned before, the significance of each item to
high-level interests will change over time. Hence,
in this module we augment the standard dynamic
routing algorithm with two kinds of time-aware gates
to control the voting signals from item embeddings to
user’s interest representation vectors, allowing the user
high-level interest capsules to concern the temporal
information during the vote assignment.

4.2.1 Multi-Gated Dynamic Routing We first
describe the dynamic routing procedure in the context
of sequential recommendation. The original purpose of
applying capsule network with dynamic routing is to
exploit more detailed hidden information from the raw
features [20]. MIND [14] has transferred the dynamic

routing algorithm to the sequential recommendation
task in order to learn a group of interests from a user’s
behavior sequence. Specifically, the item embeddings in
Eu are transformed into low-level capsules, which will
later be used to vote forK high-level capsules. Formally,
each item embedding ei ∈ Eu is transformed into
K capsules’ space using different affine transforming
matrices {W k}Kk=1 as follows:

(4.4) êi|k = W kei, k ∈ [1,K]

where W k ∈ Rd×d. Then a dynamic routing procedure
will be applied on the transformed low-level capsules for
L iterations. In the lth (l ∈ [1, L]) iteration, we aim to
compute K high-level capsules {h(l)

k }Kk=1. To do this,
we first calculate the candidate vector s

(l)
k for the kth

high-level capsule, which is defined as follows:

s
(l)
k =

|Eu|∑
i=1

c
(l)
ik êi|k(4.5)

c
(l)
ik =

exp(êi|kh
(l−1)
k )∑K

k=1 exp(êi|kh
(l−1)
k )

(4.6)

The coupling coefficients between capsule i and all the
capsules in the next layer should sum to 1. The kth

high-level capsules in the lth iteration is computed as:

(4.7) h
(l)
k = squash(s

(l)
k ) =

‖s(l)
k ‖

2

1 + ‖s(l)
k ‖2

s
(l)
k

‖s(l)
k ‖

where the squash function leaves the direction of the
vector sk unchanged but decreases its magnitude. In-
tuitively, Eq. (4.5)-(4.7) softly cluster the low-level cap-
sules into K different high-level capsules, which can be
regarded as K different interests extracted from the user
behavior sequence.

However, the standard dynamic routing process is
ignorant of the sequential order and the difference of the
time-intervals in Su. Specifically, two item sequences
with different interaction time-intervals or interaction
orders will be clustered into the same group of interest
capsules. Further, the monotonicity and periodicity
patterns are also ignored. Hence, we refine the dynamic
routing procedure by introducing a gate g

(l)
ik in Eq. (4.5)

to control the strength of votes in a time-aware manner.
The refined voting equation is:

(4.8) s
(l)
k =

|Eu|∑
i=1

g
(l)
ik c

(l)
ik êi|k

The gate g
(l)
ik is composed of two time-aware gates via

pooling:

(4.9) g
(l)
ik = pooling(ḡ

m,(l)
ik , ḡ

p,(l)
ik )
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Figure 1: Overview of the TAMIC model.

where the pooling(·) can be max-pooling or average-
pooling operation. The ḡ

m,(l)
ik and ḡ

p,(l)
ik denote the

monotonic gate and periodic gate respectively. At a
high level, we have:

ḡ
m,(l)
ik = fmonotonic gate(ti, ta,h

(l−1)
k )(4.10)

ḡ
p,(l)
ik = fperiodic gate(ti,h

(l−1)
k )(4.11)

The refining enables us to model the monotonic change
of significance of items to high-level interests, and the
periodic fluctuation of high-level interests during dy-
namic routing. If the interest fluctuates monotonically
like toys, the monotonic gate will open or close gradually
while the periodic gate will close all the time, and vice
versa. The next two sections will discuss in detail how
these two gates are designed and how the monotonicity
and periodicity patterns are concerned during dynamic
routing procedure. The pseudocode of the time-aware
dynamic routing is provided in Algorithm 1.

4.2.2 Monotonic Gate As we discussed before, the
significance of some items to high-level interests will
change monotonically over time. As the interest-specific
item embeddings {êi|k} form high-level user interests,
we can utilize the UNIX timestamp of each interacted
item to control its influence on a particular interest.
Some methods [1] used dampen functions to model the
decay of a signal over time. However, these methods
have three drawbacks: (1) the dampen function mainly
captures the decaying signal but ignores the enhancing
trend; (2) the decay coefficient in the existing methods
requires dedicated adjustment; (3) all the time intervals
share one dampen function which may not be suitable
for the multi-interest scenario. Other works [6] chose
to learn unique embeddings for different timestamps,
taking the risk of parameter explosion.

In order to rectify these shortcomings, we firstly
leverage the time encoding [3] to encode the timestamp

information into a low-dimensional temporal embedding
t ∈ Rd. Given a UNIX timestamp t, the ith value in the
temporal embedding t is computed as:

(4.12) ti =

{
sin(t/10000i/d), if i is odd

cos(t/10000i/d), otherwise

The time encoding is unique for different timestamps
and preserves the sequential order, which means the eu-
clidean distance between the embeddings of two distant
dates can be larger. It is worth mentioning that not all
the user behavior sequences start from the same UNIX
timestamp 1, and hence we normalize the timestamps
in each behavior sequence by separating the time span
of the sequence into several baskets. We then assign
each timestamp into the corresponding basket and use
the regular basket numbers to replace the timestamps
accordingly. The implementation details can be found
in Section 4.5.

Given the time embeddings, a simple method to
implement the monotonic gate is to use a neural network
that takes the time embedding of an interaction as
input and produces a value indicating the influence of
a particular item on the interests. However, there can
be different monotonic patterns and each user interest
may involve a mixture of multiple monotonic patterns.
Hence, instead of using one neural network, we propose
to use a group of G1 networks, each of which controls
the openness of one child monotonic gate. We further
leverage the attention mechanism to obtain the final
monotonic gate by aggregating the openness statuses of
all the child gates.

The openness of each child monotonic gate is deter-
mined by the time information of an interacted item ti,
that of the target item ta, and the time interval ta − ti.
Formally, the jth child monotonic gate of the ith item
in the user behavior sequence is formulated as:

(4.13) gm,ji = f j([tδ ⊕ ti ⊕ ta]), j ∈ [1, G1]
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Algorithm 1: Time-aware Dynamic Routing

Input : behavior embeddings and timestamps
(ei, ti), i ∈ Su;
target timestamp ta;
iteration times L;
number of interest capsules K;
monotonic gate embeddings

{am,j , j ∈ [1, G1]};
periodic gate embeddings

{ap,j , j ∈ [1, G2]};
Output: interest capsules in the final iteration

{h(l)
k , k = 1, · · · ,K}

1 For each interest capsule k: initialize hk = 0;
2 for each item i do
3 for j ∈ [1, G1], calculate gm,ji by Eq. (4.13);

4 for j ∈ [1, G2], calculate gp,ji by Eq. (4.15);
5 end
6 for l← [1, L] do
7 for each item i do

8 calculate ḡ
m,(l)
ik ,ḡ

p,(l)
ik by

Eq. (4.14),Eq. (4.17);
9 end

10 For each interest capsule k: calculate h
(l)
k by

Eq. (4.8);
11 end

where ⊕ refers to concatenation operation. tδ denotes
the time encoding of the time interval ta − ti. f
denotes the neural network which is implemented by
multilayer perceptron(MLP) in our experiments. We
use the sigmoid function as the last layer of the MLP
to bound the gate output within 0 and 1, i.e., gm,ji ∈
(0, 1). Note that the neural networks in the child gates
are initialized differently to learn different monotonic
patterns, and they are shared by all the iterations and
interests. We then use an attention mechanism to
calculate the weighted average of all the child gates as
the final monotonic gate ḡ

m,(l)
ik from the ith item to the

kth interest in the lth iteration. To be interest-specific,
ḡ
m,(l)
ik is computed based on the interest representation
h
(l−1)
k , as defined:

(4.14) ḡ
m,(l)
ik =

G1∑
j=1

am,j
>
h

(l−1)
k∑G1

b=1 a
m,b>h

(l−1)
k

gm,ji

where am,j ∈ Rd×1 is the embedding for the jth child
monotonic gate, which serves as the key to calculate the
matching score with h

(l−1)
k . Although the child gates

are shared among all the interests, Eq. (4.14) will assign
different weights to them, leading to different monotonic
gates for different interests.

4.2.3 Periodic Gate The design of the periodic gate
is motivated by the phased-LSTM [17] which introduces
a time gate into the vanilla LSTM. The time gate will
open and close periodically with different periods and
phases in each channel so as to capture the periodically

changed signals such as the sine functions. In the
dynamic routing procedure, the periodic gate aims
to capture the periodicity patterns for user interests.
Similar to the monotonic gate, we define G2 child
periodic gates with different initial phase s and period
τ to cope with various periodicity patterns. To better
simulate user’s typical interaction habits like daily,
weekly, seasonal or annual purchasing, the period of
each child gate are manually chosen from a multiple
of days, weeks, months or years. In opposite, the
phases are learnable parameters trained together with
the model. The subscription k and the superscription l
will be omitted for convenience. Formally, the jth child
periodic gate of ith item in user behavior sequence is
computed as:

gp,ji =

{
sin(πφji/r

j), 0 < φji < rj

αφji , rj < φji < 1
(4.15)

φji =
(ti − sj) mod τ j

τ j
(4.16)

where the r1, · · · , rG2 are parameters to be learned,
denoting the interest existing ratios in the whole period.
α is manually set as the inactive value. The τ1, · · · , τG2

are the changing periods of user interests.
Similar to the monotonic gate, we also use the

attention mechanism to calculate the weighted average
of all the child periodic gates as the final periodic gate.
Formally, the periodic gate ḡ

p,(l)
ik from the ith item to

the kth interest in the lth iteration is computed as:

(4.17) ḡ
p,(l)
ik =

G2∑
j=1

ap,j
>
h

(l−1)
k∑G2

b=1 a
p,b>h

(l−1)
k

gp,ji

where ap,j ∈ Rd×1 is the embedding for the jth child
periodic gate, and h

(l−1)
k is the kth interest obtained

from the previous iteration.

4.3 Multi-Interest Aggregation After performing
L iterations in the time-aware multi-interest learn-
ing module, we obtain K high-level capsules Hu =
{h(L)

1 , · · · ,h(L)
K } representing user’s different interests.

In this module, we use the target item embedding ea
as the query to evaluate the importance of each user
interest. We then derive a target-item-sensitive user
representation vu ∈ Rd×1 by aggregating user interests
in an attentive manner. Formally, we have:

(4.18) vu =

K∑
k=1

ea
>h

(L)
k∑K

k′=1 ea
>h

(L)

k′

h
(L)
k

4.4 Training and Serving Finally, we perform dot
product between vu and the target item embedding ea
to produce the preference score, i.e., vu

>ea.
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To optimize the parameters of our TAMIC model,
we maximize the following objective function:

(4.19) L =
∑
Su∈T

log
exp(vu

>ea)∑
i∈I′ exp(vu>ei)

where T denotes the set of training instances, and
I ′ ⊂ I\{ia} is a small sampled subset of items excluding
the target item ia.

During the serving stage, the multi-interest aggre-
gation module will be discarded because the target item
is unknown. Each interest vector of a user can indepen-
dently retrieve top-N items from the large-scale item
pool by the nearest neighbor library such as Faiss [12].
Then we compute the score of the items based on their
inner production proximity with user interests to obtain
the final top-N items, where the score function is:

(4.20) fscore(Hu, ei) = max
1≤k≤K

ei
>h

(L)
k

where ei ∈ Rd×1 is the embedding of item i in I.

4.5 Implementation Details We implemented our
proposed TAMIC model based on Tensorflow 1.15
framework and trained on a 64-bit Linus server equipped
with 32 Intel Xeon@2.10GHz CPUs, 128GB memory
and four Titan RTX 2080ti GPUs. The embedding
matrix of items W emb and the gates’ embeddings
{ap,j},{am,j} are initialized randomly, where we choose
64 as the embedding dim. By default, we set both num-
bers of child monotonic gates and child periodic gates to
8, and set the number of high-level interest capsules K
to 4. The inactive value α is set to 0.1. The batch size is
set to 128. Compared with MIND [14], the extra param-
eters of TAMIC are in the MLPs of the monotonic gates
in Eq. (4.13) and the key embeddings of the two kinds of
gates in Eq. (4.14) and Eq. (4.17), which are negligible
compared to the parameters of item embeddings. Thus
the total computation complexity of TAMIC keeps same
to that of MIND [14] which is O(K|Eu|d) and K, |Eu|,
d refers to the interest capsules number, the user’s his-
torical interaction sequence length and the embedding
dimension, respectively.1

5 Experiments

5.1 Experimental Settings

5.1.1 Datasets We use three real-world sequential
recommendation datasets from Amazon2 and Taobao3.
The statistics of the datasets are listed in Table 1.

1Code is in https://github.com/Cloudcatcher888/TAMIC
2http://jmcauley.ucsd.edu/data/amazon/
3https://tianchi.aliyun.com/dataset

Table 1: The statistics of the datasets.

Dataset #users #items #interactions

Amazon Clothing 285,464 376,859 5,748,920
Amazon Books 459,133 313,966 8,898,041

Taobao 976779 1708530 85384110

• Amazon: this dataset consists of reviews of differ-
ent kinds of products from Amazon [16]. We con-
sider two categories of products and obtain Ama-
zon Clothing and Amazon Books subsets.

• Taobao: this dataset is collected from the e-
commerce platform Taobao [9]. We use the item
id and the UNIX timestamp for our experiments.

5.1.2 Baselines and Evaluation Protocols We
compare our proposed TAMIC with various existing
sequential and non-sequential recommendation meth-
ods. As there will be unseen users in the validation
and test sets, MF-based methods are inapplicable to
our setting. We consider four categories (I: non-RNN,
II: RNN/CNN, III: time-aware, IV: capsule-network-
based) of comparison methods as follows.

• Most Popular (I) This recommends the top-N
globally most popular items to all the users.

• YouTube DNN (I) [21] is a basic deep learning
model, which uses multi-layer perceptrons for pref-
erence prediction.

• GRU4Rec (II) [10] is a typical GRU-based
method for sequential recommendation.

• ACVAE (II) [23] is a state-of-the-art model which
employs VAE to learn high-quality item represen-
tations and apply a recurrent and convolutional
structure to capture global and local item corre-
lations in the sequence.

• TIEN (III) [6] is an enhanced version of DIEN
which consider the timestamp information to enrich
the item implicit semantic information in RNN.

• TiSASRec (III) [2] is time interval aware trans-
former recommendation framework which also con-
siders the timestamp information.

• MIND (IV) [14] is a multi-interest recommenda-
tion framework, which is the first work to adopt
the dynamic routing algorithm for modeling multi-
ple interests from user behavior sequences.

• ComiRec (IV) [4] is the state-of-the-art recom-
mendation method which employs self-attention to
learn user multi-interest representations.

We used the published source codes of all the compar-
ison methods except for the Most Popular and tuned
the hyperparameters to their best performance. For
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fair comparison, we follow the same data preprocess-
ing and data splitting rule in ComiRec [4] for our
method and baselines, which splits all users into train-
ing/validation/test sets by the proportion of 8:1:1. We
train models using the entire user behavior sequences of
training users based on Eq. (4.18). TAMIC and mod-
els in Category IV are tested in the serving stage us-
ing Eq. (4.20). For validation and testing, we uses the
first 80% of user behaviors to infer user embeddings and
compute metrics by predicting the remaining 20% user
behaviors. We use the hit ratio (HR), recall and NDCG
on Top20/50 as the metrics, which are commonly used
in sequential recommendation works [4, 19].

5.2 Performance Comparison Table 2 provides
the evaluation results of different methods on three
datasets. The influence of random initialization to the
results is less than 0.0003. The results on different
metrics are consistent. From Table 2, we can see that
TAMIC improves the recommendation performance sig-
nificantly compared with all the baselines and it re-
ports the best performance in all the cases. On aver-
age, TAMIC achieves 6.4%, 5.9% and 4.2% relative im-
provements than the best baseline model on the three
datasets, respectively. The models in Category I do not
consider sequential user behaviors, and hence perform
worse than the methods in Category II and III. The
RNN-based and CNN-based models in Category II cap-
ture the sequential information of user behaviors. The
time aware methods in Category III can capture both
the time order information and the time interval infor-
mation of user behaviors, which can achieve better per-
formance than GRU4REC and DIEN. However, models
in Category II and III generally perform worse than
multi-interest networks in Category IV. This indicates
the importance of using multiple vectors to learn users’
different interests. Both MIND and ComiRec ignore the
important temporal information during dynamic rout-
ing, resulting in inferior performance compared with
TAMIC. Thanks to the decoupled approximate nearest
neighbor search, the inference time of selecting thou-
sands of candidate items from the billion-scale item pool
during serving stage can be less than 15 milliseconds.

5.3 Ablation Study We perform an ablation study
on Amazon Clothing to evaluate the effects of different
components of TAMIC. Similar conclusions can be
drawn using the other datasets. We mainly consider
the following settings.

• BaseModel: The base model of TAMIC that only
uses the dynamic routing algorithm like MIND [14].

• ComiRec+Temporal Feature: This model uses
the ComiRec [4] as the base model and directly

concatenates the time encoding [3] of timestamp
with the item embedding as the new item embed-
ding to consider the temporal information simply.

• BaseModel+Monotonic: A refined model that
only uses the monotonic gate during dynamic rout-
ing.

• BaseModel+Periodic: A refined model that
only uses the periodic gate during dynamic routing.

• TAMIC (Average-Pooling): A variant of
TAMIC that performs average pooling to combine
the outputs from the monotonic gate and the peri-
odic gate in Eq. (4.9).

• TAMIC (Max-Pooling): The complete version
of the proposed model that performs max pooling
to combine the outputs from the monotonic gate
and the periodic gate.

The results are presented in Table 3. Base-
Model+Periodic improves the top-20 and top-50 ND-
CGs by 11.13% and 8.35%, respectively. Base-
Model+Monotonic improves the top-20 and top-50 ND-
CGs by 7.16% and 6.61%, respectively. The reason
might be that the user interests to clothes involve strong
seasonal patterns. Moreover, performing max pooling
over two kinds of gates is generally better than average
pooling. This is because max pooling enables the reser-
vation of any kind of temporal patterns in the final user
multi-interest representation, thus benefiting the next-
item prediction. TAMIC outperforms the ComiRec di-
rectly using the concatenating time encoding by 5.12%
and 4.51% in top-20 and top-50 NDCGs, which shows
that the monotonic and periodic gates can capture tem-
poral information more effectively on this dataset.

5.4 Parameter Sensitivity We investigate the sen-
sitivity of the number of child monotonic gates G1, and
meanwhile we evaluate the influence of different pe-
riod combinations of the child periodic gates on the
model performance. The value of G1 is chosen from
{2,4,6,8,10}. The periods of the child periodic gates are
chosen from the following combinations: comA: [1d,
30d, 365d], comB: [0.5d, 1d, 7d, 30d, 365d], comC:
[1d, 7d, 30d, 60d, 90d, 365d], comD: [1d, 7d, 30d, 90d,
180d, 365d], where 1d = 86400 seconds. From comA
to comD, we include more child periodic gates (i.e.,
G2 ∈ {3, 5, 6}) and gradually pay more attention to
long-term periodic patterns like monthly or annual pe-
riods. Figure 2 shows the top-50 HR results of our model
with different values of G1 and the four period combi-
nations on Amazon Clothing and Taobao datasets.
The trends on Amazon Books are similar to those on
Amazon Clothing. On both datasets, the performance
of TAMIC becomes better when G1 increases from 2
to 6. As G1 exceeds 6, the performance of TAMIC is
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Table 2: The performance comparison results. All the results are percentage numbers with ‘%’ omitted.The
underlined values mark the best performance of the baselines in each category.

Category I II III IV

Method
Most

Popular DNN GRU4REC ACVAE TIEN TiSASRec MIND ComiRec TAMIC

Amazon
Clothing

Top 20
HR 5.38 15.95 14.01 16.42 16.56 17.22 16.05 17.31 18.23

NDCG 4.71 14.97 13.15 14.82 15.03 15.74 14.95 15.96 17.04
recall 3.71 11.03 9.95 10.73 10.98 11.55 10.84 11.91 12.96

Top 50
HR 5.88 17.42 16.51 18.52 19.65 20.21 19.15 20.22 21.34

NDCG 5.12 16.36 15.23 16.75 17.77 18.33 17.84 18.68 19.90
recall 4.98 12.34 11.53 12.21 13.18 13.78 12.92 13.95 15.02

Amazon
books

Top 20
HR 3.02 10.29 8.95 10.17 11.04 12.05 10.62 12.01 12.89

NDCG 2.26 7.67 6.80 8.45 8.95 8.94 7.93 9.19 9.64
recall 1.37 4.57 4.06 4.81 4.43 4.48 4.86 5.31 5.67

Top 50
HR 5.27 15.89 13.66 15.14 16.31 16.73 16.14 17.58 18.22

NDCG 3.94 12.08 10.37 11.24 12.01 12.49 12.23 13.52 14.26
recall 2.40 7.31 6.50 6.98 7.31 7.36 7.64 8.11 8.67

Taobao

Top 20
HR 5.42 28.79 35.75 35.83 36.12 37.15 38.12 41.75 43.22

NDCG 2.07 14.51 22.01 23.28 22.31 21.78 20.39 24.01 25.02
recall 0.40 4.21 5.88 6.18 6.42 6.38 6.28 6.89 7.42

Top 50
HR 9.31 39.11 43.07 45.13 44.64 45.43 45.85 52.42 53.82

NDCG 3.60 20.25 25.31 26.89 28.21 30.11 25.07 31.37 32.79
recall 0.74 6.17 7.49 7.88 7.89 8.84 8.16 9.82 10.89

Table 3: Ablation study on Amazon Clothing.

Method
Top 20 Top 50

NDCG Recall NDCG Recall
Base Model 14.95 10.84 17.84 12.92

ComiRec + Temporal Feature 16.21 12.31 19.04 13.98
Base Model + Periodic Gate 16.65 12.55 19.33 14.57

Base Model + Monotonic Gate 16.02 11.94 19.02 14.21
TAMIC (Average-Pooling) 17.06 12.87 19.78 14.92
TAMIC (Max-Pooling) 17.04 12.96 19.90 15.02
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Figure 2: The top-50 HR results of TAMIC with
different numbers of child monotonic gates and different
combinations of child periodic gates.

more sensitive to the period combinations. This implies
the number of different monotonic patterns is not large
in practice. The performance of TAMIC on Amazon
Clothing is generally increasing when the period combi-
nation changes from comA to comD. In contrast, the
performance TAMIC on Taobao exhibits an opposite
trend. This follows the intuition that user interests in
clothing involve more and longer periodic patterns com-
pared the interests in general goods supplied by Taobao.

5.5 Case Study Lastly, we perform a case study to
illustrate the effectiveness of monotonic and periodic
gates. We sampled one user behavior sequence involving
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Figure 3: The openness of child monotonic/periodic
gates observed at different timestamps of a sampled user
behavior sequence by a test user in Taobao.

one toy and one toothpaste, which has a length of
N (i.e., N = 36). Figure 3 visualizes the 8 child
monotonic gates and 6 child periodic gates respectively.
We can see that the learned child monotonic gates
mimic monotonic functions with different monotonicity
such as enhancing (e.g., gate 4,6) and decaying (e.g.,
gate 1,3,7) trends. Meanwhile, the child periodic gates
with the same period can learn different phases and
open time ratios (e.g., gate 2,3). These results confirm
our proposed gates are effective in capturing different
temporal patterns. We then focus on the toy and the
toothpaste in the sequence which vote for high-level
interest capsules independently. We study the attention
scores of the child gates on the most voted interest (i.e.,
maxk{cik} in Eq. (4.6)) for each item. The highest
attention scores for the toy and toothpaste among the 8
child monotonic gates are observed at gate 7 and gate 4,
respectively. This implies the significance of the toy to
its related interest decays over time, and the toothpaste
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acts reversely. We also observe the two highest attention
scores for the toothpaste among the 6 child periodic
gates are obtained at gate 4. This means the user
interest related to toothpastes has a period of about
2-3 months. The attention scores for the toy over all
the child periodic gates are similar, which is consistent
with the decay pattern of the user interest on toys.

6 Conclusion

In this paper, we propose a time-aware multi-interest
capsule network named TAMIC for sequential recom-
mendation, which captures diverse user interests with
the consideration of temporal information in user behav-
ior sequences. We introduce two kinds of voting gates,
namely monotonic gates and periodic gates, to adap-
tively control the voting signals from items to user high-
level interest capsules based on the timestamps, thus
enabling the learning of time-aware user multi-interest
representations. The experimental results on real-world
datasets verify the superiority of TAMIC compared with
various state-of-the-art sequential recommendation ap-
proaches. In future work, we will try to apply mono-
tonic gates and periodic gates to non-capsule models like
transformer-based sequential recommendation methods.
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