
Incremental Learning for Multi-Interest Sequential
Recommendation

Zhikai Wang
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

Cloudcatcher.888@sjtu.edu.cn

Yanyan Shen
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

shenyy@sjtu.edu.cn

Abstract—In recent years, sequential recommendation has
been widely researched, which aims to predict the next item
of interest based on user’s previously interacted item sequence.
Existing works utilize capsule network and self-attention method
to explicitly capture multiple underlying interests from a user’s
interaction sequence, achieving the state-of-the-art sequential
recommendation performance. In practice, the lengths of user
interaction sequences are ever-increasing and users might develop
new interests from new interactions, and a model should be
updated or even expanded continuously to capture the new
user interests. We refer to this problem as incremental multi-
interest sequential recommendation, which has not yet been well
investigated in the existing literature. In this paper, we propose
an effective incremental learning framework for multi-interest
sequential recommendation called IMSR, which augments the
traditional fine-tuning strategy with the existing-interests re-
tainer (EIR), new-interests detector (NID), and projection-based
interests trimmer (PIT) to adaptively expand the model to
accommodate user’s new interests and prevent it from forgetting
user’s existing interests. Extensive experiments on real-world
datasets verify the effectiveness of the proposed IMSR on
incremental multi-interest sequential recommendation, compared
with various baseline approaches.

Index Terms—Incremental learning, multi-interest sequential
recommendation, capsule network, self-attention

I. INTRODUCTION

Sequential recommendation, which aims at predicting user
preference on items given historical user interaction sequence,
is an essential task in nowadays recommender systems. Var-
ious approaches have been proposed for sequential recom-
mendation [1]–[4]. They typically extract one user preference
vector from the interaction sequence. Recently, many works
[5]–[8] argued that users usually have multiple latent interests
beneath their interaction sequences, and hence they proposed
to incorporate different kinds of multi-interest extractors into
sequential recommendation models, which is referred to as
multi-interest sequential recommendation (MSR). Specifically,
existing works employ the dynamic routing or self-attention
mechanism to explicitly compute the user’s multiple interest
vectors based on sequentially interacted items. The final user
preference vector is derived by aggregating multiple interest
vectors and used for next item prediction.

In real recommender systems, the lengths of user interaction
sequences are ever-increasing, and users might develop new
interests from new interactions. Both existing and new interests

might reappear in future interactions. As stated in the experi-
ments of the previous work [8], over eighty percent of interests
will reappear for more than three times. However, we do not
know which of the existing or new interests will reappear.
Therefore, it is of great importance to update an MSR model
continuously to capture users’ new interests while retaining all
existing interests.

A simple strategy for model updating is to retrain the model
using the whole user interaction sequences per time span (e.g.,
one hour or a day). In this strategy, both existing and newly
developed interests in the user interaction sequence can be
captured. However, training on the whole user interaction
sequences is extremely time-consuming, and this strategy is
not practical in situations where all the historical interactions
are not obtainable or the memory space for maintaining the
whole sequences during training and inference is constrained.
To address this problem, a more cost-effective strategy is to
fine-tune the model with the new interactions in the current
time span and inherit the model parameters from the previous
time span as the initial values. In this strategy, users’ existing
interests extracted from previous interactions are not thrown
away completely and will be updated in the current time span.

By rethinking the basic idea of fine-tuning an MSR model,
we have two intuitions for learning users’ evolving interests
over time, including the existing interests and the newly devel-
oped ones, respectively. On one hand, user’s existing interests
extracted from previous time spans are not fixed and may drift
gradually over time. For instance, a user who was interested
in flip phones may later adapt his/her interest to smartphones.
On the other hand, the number of newly developed interests
may change dynamically in different time spans. For example,
a user, who has been interested in computer games for a long
time, might suddenly become interested in baby care products
in a new time span due to the birth of a child. Based on the
above two intuitions, our goal of this paper is to develop an
incremental multi-interest sequential recommendation frame-
work which preserves existing interests via modest drifting or
refining and adaptively increases the number of new interest
vectors to deal with newly developed interests. To establish the
incremental MSR framework mentioned above, there are three
challenges remained to be tackled. First, existing interests
might be forgotten when only newly collected interactions

are used for model training, which will result in performance
degeneration on items related to existing interests. In our
experiment, we find the performance will drop fast by only
fine-tuning the model. Second, new interests conveyed by new
interactions in the current time span may overlay existing
interests due to the fixed model complexity, i.e., a fixed number
of interest vectors over time spans. Likewise, existing interests
might in turn affect the learning of new interests. Hence, it is
important to prevent the learning of existing and new interests
from interfering with each other. Third, different users will
develop different numbers of new interests in a new time span.
It is required to decide the number of new interests adaptively
for each user during each time span.

The literature for general incremental learning includes
reservoir-based methods, regularization-based methods and
model-expansion methods. Reservoir-based methods [9]–[11]
focus on preserving past knowledge by selecting samples
from the reservoir for model updating based on prioritizing
recency or the extent of being forgotten. However, they need
to store historical interactions which may not be obtainable
in incremental MSR. Regularization-based methods [12], [13]
propose to preserve the knowledge learned in the past time
spans by enforcing regularization terms, which regularly re-
strains the model parameters rather than user latent repre-
sentations. Moreover, these kinds of methods do not vary
model complexity over time, and they cannot generate new
interest vectors which require extra model parameters. Model-
expansion methods [14]–[16] aim to expand the model capac-
ity to cope with new knowledge during incremental learning.
While model expansion can be applied to capture new interests
and prevent interests from interfering with each other, existing
works [16], [17] require knowing the expanded model capacity
at each time span in advance. Since the number of new
interests for each user is dynamically changing, it is a non-
trivial task to perform model expansion for incremental multi-
interest sequential recommendation. To these ends, existing
incremental learning methods are of limited use in tackling
the challenges in incremental MSR.

In this paper, we develop an end-to-end framework for In-
cremental Multi-interest Sequential Recommendation (IMSR),
which involves the existing-interests retainer, new-interests
detector, and projection-based interests trimmer. More specif-
ically, the existing-interest retainer, which aims to solve the
first challenge, uses the distillation loss [18] to make sure that
the existing interest vectors are not far away from their original
positions. The new-interests detector is proposed to solve
the second challenge, which determines when to create new
interests based on the change in distribution of item numbers
being classified to different interests. The projection-based
interests trimmer is proposed to solve the third challenge,
which first allocates a relatively large number of new interests
and then modifies the learned interest vectors’ magnitudes
and directions to remove redundant interests. In this way,
our framework can preserve the existing interests while an
appropriate number of new interests are developed from the
new interactions.

The main contributions are summarized as follows:
• We propose a framework for incremental multi-interest

sequential recommendation which can dynamically capture
new interests from recent interactions for each user while
retaining existing interests.

• We develop an existing-interests retainer based on knowl-
edge distillation which can preserve existing interests from
heavily drifting. We design a new-interests detector to
determine when to create new interests and a projection-
based interests trimmer to develop new interests adaptively.

• We implement our framework on two kinds of multi-interest
sequential recommendation models, i.e., dynamic-routing-
based and self-attention-based models, and conduct exten-
sive experiments on four real datasets. The results demon-
strate that our proposed framework can adaptively increase
interest vectors to accommodate new interests, effectively
address the existing interets forgetting problem, and achieve
competing performance as full retraining method compared
with the existing incremental learning methods .

II. BACKGROUND

Consider a recommendation dataset consisting of interaction
records between a set U of users and a set I of items. Let
A = {(u, i, s)} denote all the interactions in the dataset,
where u ∈ U is a user id, i ∈ I is an item id, and s is
the timestamp when the interaction happens. In the sequential
recommendation setting, each instance consists of two parts.
The input part is u’s historical interaction sequence which
is a sequence of u’s previously interacted items chronically,
denoted as Su = {i1,u, i2,u, · · · , in,u}. The output part is the
target items ia,u that the user u lastly interacts with. Multi-
interest sequential recommendation (MSR) aims to learn a
function fuser which can map a user’s interaction sequence
Su into a multi-interest user representation Hu:

Hu = fuser(Su) = (hu,1, · · · ,hu,K) ∈ Rd×K , (1)
where hu,k denotes the kth interest vector of u (k ∈ [1,K]), K
is the number of user interests, and d is the dimension of each
interest vector. The MSR task is to find the top-N candidate
items with the highest scores using a scoring function:

fscore(Hu, ei), (2)
where ei ∈ Rd×1 denotes the embedding of item i ∈ I.

In practice, user interactions are prolonged with new inter-
actions collected over time spans. Thus an MSR model should
be retrained in each time span to update user representations.
Basically, full retraining strategy can be used for MSR, which
uses all the historical interaction sequences to retrain the
model in each time span. As full retraining is time- and
space-consuming when the historical interaction sequences
are extremely long, a more cost-effective way is to perform
incremental learning with new interactions collected in each
time span, which can be formally defined as the incremental
multi-interest sequential recommendation. Table I provides the
key notations used throughout the paper.

Definition 1 (Incremental multi-interest sequential recom-
mendation): Let Stu = {it1,u, it2,u, · · · , itn,u} and ita,u denote

TABLE I
NOTATION TABLE.

Notation Description

(u, i, t) the user u interacted with item i at timestamp t
ia the target item during training
U , I the sets of users and items
Su the historical behavior sequence of user u
hu,k the kth interest vector for user u
Hu the multi-interest representation of user u
ea the target item’s embedding

the user u’s new interactions and the target item within
time span t, respectively. In time span t, we have an MSR
model Mt−1 trained at the previous time span and try to
update the model to be Mt with newly collected sequences
{Stu|u ∈ U}.

III. THE BASIC FINE-TUNING APPROACH

To solve the above defined incremental MSR, we first
describe the basic fine-tuning approach based on two kinds
of MSR models, namely dynamic-routing based model (DR)
and self-attention-based model (SA).

1) Dynamic-routing based MSR (DR): DR utilizes the
dynamic routing mechanism to extract multiple interest vectors
from user interaction sequences. For each user u we use
Etu = {ei | (u, i) ∈ Stu} to denote the set of item embeddings
involved in the user interaction sequence Stu, and use eta to
denote the target item embedding. It adopts the Behavior-to-
Interest (B2I) dynamic routing [5], [6] to learn a group of
interests from a user’s interaction sequence. Formally, each
item embedding ei ∈ Etu is first transformed into the low-
level capsules’ plane using a shared affine transforming matrix
W t ∈ Rd×d as:

êi = W tei. (3)

Then a B2I dynamic routing procedure will be applied to
the transformed low-level capsules for L iterations. h(0),t

k is
initialized as zero. The k ∈ [1, ...,Kt

u] high-level capsule in
the l ∈ [1, ..., L] iteration is computed as:

h
(l),t
k = φ(

|Et
u|∑

i=1

c
(l),t
ik êi), (4)

where c
(l),t
ik is the lth layer’s vote from item i to interest

k in time span t, which is the softmax result of eih
(l−1),t
k

over other items in Etu. In later sections, the interest capsule
only refers to the last layer’s capsule if not indicated. φ
denotes the squash function [19], which leaves the direction
of the input vector unchanged but decreases its magnitude.
Intuitively, Eq. (4) softly clusters the low-level capsules into
Kt
u different high-level capsules, which can be regarded as Kt

u

different interests extracted from the user interaction sequence.
Note that the value of Kt

u can be different for different users.
After performing the multi-interest extractor, we obtain Kt

u

vectors Ht
u = {ht1, · · · ,h

t
Kt

u
} representing user’s different

interests. In each time span, the target item embedding eta is
the query to evaluate the importance of each user interest.
We then derive a target-item-sensitive user representation

vtu ∈ Rd×1 at time span t by aggregating user interests in
an attentive manner. Formally, we have:

vtu =

Kt
u∑

k=1

βkh
t
k, (5)

where βk is the softmax value of etah
t
k over all interests.

We perform dot-product between vtu and the target item
embedding eta to produce the preference score, i.e., vtu

>
eta.

The objective function for time span t is:

LtSS =
∑
Dt

log
exp(vtu

>
eta)∑

i∈I′ exp(v
t
u
>ei)

, (6)

where I ′ ⊂ I\{ita} is a small sampled subset of items
excluding the target item ita, which serves as the negative
samples set [20]. DR uses backpropagation on loss function
in Eq. (6) to update W t. In time span t + 1, W t+1 will be
fine-tuned based on W t as the initial value. In this way, the
user’s existing interests are not discarded completely and can
be refined with the incremental interaction sequence.

2) Self-attention based MSR (SA): Given the embeddings
of user interactions Etu ∈ Rd×n, SA uses the self-attention
mechanism to obtain a vector of weights atu ∈ Rn as:

atu = softmax(wt>
u tanh(W t

1E
t
u))
>, (7)

where wt
u and W t

1 are trainable parameters with size da and
da × d, respectively.

The vector atu with size n represents the attention weight
of user interactions. When we sum up the embeddings of user
interactions according to the attention weights, we can obtain
a vector representation htu = Etua

t
u for the user.

This vector representation reflects a specific interest of the
user u. To represent the overall interests of the user, we need
multiple hu from the user interactions that focus on different
interests. Thus we extend the wt

u into a da-by-K matrix as
W t

u. Then the attention vector becomes an attention matrix
At
u as:

At
u = softmax(W t>

u tanh(W t
1E

t
u))
>. (8)

Note that we assign different wu to different users for com-
puting their exclusive interest vectors. The final matrix of user
interests Ht

u can be computed by:
Ht

u = EtuA
t
u. (9)

Then SA performs the same aggregator in DR to compute the
objective function and uses backpropagation to update W t

1

and {W t
u | u ∈ U}. In time span t+ 1, W t+1

1 and {W t+1
u |

u ∈ U} will be fine-tuned based on W t
1 and {W t

u | u ∈ U}
to preserve the existing interests.

By far, we introduce a vanilla way to train MSR models in
an incremental manner. However, existing interests might be
forgotten using the fine-tuning method, which will result in
performance degeneration on items related to existing inter-
ests. Moreover, new interests may appear in new interactions.
If the model capacity is fixed, the occurrence of new interests
may interfere with existing interests. Hence, it is desirable to
adaptively increase the number of interests to accommodate
new interests. In what follows, we describe how the proposed

IMSR resolves these challenges.

IV. THE IMSR FRAMEWORK

A. Overview

Our proposed IMSR is an incremental learning framework
for multi-interest sequential recommendation that can dynami-
cally capture new interests from new interactions while retain-
ing existing interests. Figure 1 depicts the overall architecture
of IMSR which consists of two components. The first com-
ponent is the base model, a dynamic routing or self-attention-
based multi-interest recommendation model [6]. The second
component contains three modules called existing-interests
retainer (EIR), new-interests detector (NID), and projection-
based new-interests trimmer (PIT), respectively. EIR is de-
signed to prevent the existing interests learned by the base
model in previous time spans from heavily drifting. The new-
interests detector creates new interests to prevent the learning
of existing and new interests from interfering with each other.
The projection-based interests trimmer is proposed to decide
the number of new interests adaptively for each user during
each time span.

The remaining parts of this section will be organized as
follows. We first introduce the EIR for interest retention in
Section IV-B. We describe the NID for new-interests detection
in Section IV-C and PIT for the new-interests expansion in
Section IV-D. In Section IV-E and Section IV-F, we present the
training/inference procedure and the implementation details,
respectively.

B. Existing-interests Retention

As stated in the previous works [7], [8], existing and new
interests might reappear in the future interactions and we
do not know which of the existing or new interests will
reappear. Therefore, it is of great importance to preserve the
all existing interests from the previous time span and prevent
them from changing greatly or being taken place by new
interests. At the same time, the items belonging to the existing
interests can be absorbed into these interests to adjust their
representations. The most straightforward idea is to equip a
distance-based regularization term like euclidean distance to
prevent the existing interest vectors from drifting far away
from their original representations after performing multi-
interest extractor in a new time span. However, this method is
not flexible enough. More specifically, the distance between
two vectors of completely different interests can be small,
which means even a little change in the euclidean space may
change the semantics of an interest vector. Thus in worse
cases, the distance-based regularization term will prevent items
from being recommended by the corresponding interests but
cannot prevent the existing interest from changing completely.

Here we find that knowledge distillation, which does not
restrain the representation vector itself but focuses on the
restraint of the output logits, is a more flexible way to over-
come forgetting problems. Hinton et al. [18] used knowledge
distillation to transfer knowledge from an ensemble of models
into a single model for efficient deployment, where knowledge

distillation loss is used to preserve knowledge from the cum-
bersome model by encouraging the outputs of distilled model
to approximate that of the cumbersome model. Similarly,
the authors of LwF [21] performed knowledge distillation to
learn knowledge from new tasks while keeping knowledge on
existing tasks in incremental learning scenarios.

Instead of restraining the existing interest representation
vector h

(L),t
k (k ∈ [1, ...Kt−1

u]), we propose to use a knowl-
edge distillation loss to overcome the problem. Vanilla dis-
tillation loss [18] needs a learned teacher model, which is
not obtainable in MSR, to guide the student model. However,
if we regard the interest capsules as several item classes,
the target item preference scoring can also be regarded as
a matching-based classification model. Similar to the original
knowledge distillation idea, the existing interest vectors can be
viewed as the parameters of the teacher model, and the new
interest vectors are the parameters of the student model. Thus,
a distillation loss to preserve the existing knowledge needs to
encourage the outputs of the student model to approximate
those of the teacher model. Formally, we have:

LtKD,k,u = LCE
(
σ

(
f(htk, e

t
a)

τ

)
, σ

(
f(ht−1k , eta)

τ

))
,

LtKD =
∑
St
u∈Dt

Kt−1
u∑
k=1

LtKD,k,u,

(10)
where σ is the sigmoid function, and τ is the temperature
parameter to get soft targets. Here we adopt the dot-product as
the matching function f . We follow the function of distillation
loss in [10], which replaces the softmax function with the
sigmoid function and is efficient to compute. In this way, the
new interest vectors will keep similar semantics to the existing
interests even when their vector is far from the original place
in high-level interest vectors’ space. We call this component
for existing-interests retention as interests retainer.

C. New-interests Detection

The previous section proposes a way to preserve the existing
interests during incremental learning for MSR. However, a
shared and predefined interest number lacks enough diversity
and adjustability for the incremental scenario, where the exist-
ing interests and new interests will interfere with each other,
e.g., the existing interests might be overlaid by new interests
or prevent the new interests being captured due to the fixed
interests capacity. Thus, we introduce a new-interests detector
in this section which determines when to create new interests
based on the distribution of items number being classified to
all interests.

Given a case where a user interacts with both skirt and
LEGO in one time span and the user has bought toys but no
clothing-related items before, we visualize the dot-products of
these two items to the existing interests and new interests.
In Figure 2, we find that skirt has similar dot-products with
all eight existing interests and the LEGO has the largest dot-
product on the third interest. If we give a new interest vector

trimmed

Embedding Layer

Time Span t-1 Time Span t Time Span t+1Time Span t-2

NID

…Multi-interest
Extractor

Label aware attention

User1 Interaction
Sequence

Item
Embeddings

PIT

Interest Vectors

NID: New-interests Detector

New
Interests

Soft
Targets

Soft
Votes

KD loss

target item

EIR: Existing-interests Retainer

PIT: Projection-based Interest Trimmer

preserved

items

interests

…

EIR

Sample Softmax Loss

Label aware attention

Sample Softmax Loss

Fig. 1. The framework overview. The left part shows the fine-tuning method in time span t. The right part gives illustrations for EIR (Section IV-B),
NID (Section IV-C), and PIT (Section IV-D).

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9

before after

(a) Skirt

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9

before after

(b) LEGO
Fig. 2. The dot-products of skirt and LEGO to existing/new interests using
DR before training (red) and after training (purple).

and retrain the model using fine-tuning strategy, the skirt has
the largest dot-product on the newly created ninth interest, and
LEGO keeps unchanged. We may infer that the third interest
for this user is toy-related, and there are no clothing-related
interests. This case illustrated that some items have similar
dot-products on all the interests because they are “puzzled”
and can not be classified to any of the interests.

Based on the above observation, we define the puzzlement of
an item for multi-interest extractor and provide new interest
vectors only if most of the items have a certain extent of
puzzlement. We use Query Sparsity Measurement [22], which
uses KL divergence between the query’s attention probability
distribution and the uniform distribution to select the most
dominant dot-product pairs to represent the puzzlement. We do
not have a query mechanism in MSR models. However, we
can take the dot-product from item embedding ei to interest
vectors hk in a probabilistic view as:

p(hk|ei) =
kernel(ei|hk)∑Kt

k′=1 kernel(ei|hk′)
,

kernel(ei|hk) = eeih
>
k ,

(11)

where p(hk|ei) is the posterior probability of the ith item
being classified to the kth interest. For brevity, we omit the
subscript u and t. Intuitively if p(hk|ei) is close to a uniform
distribution p(hk|ei) = 1/Kt, it means the item can not
be well classified into any existing interests and the new
interest capsules are needed. Naturally, the distance between

two distributions p and q can be used to decide when to
create new interests. Here we measure the distance through
the Kullback-Leibler divergence as follows:

KL(q||p) = ln

Kt∑
k′=1

eeih
>
k − 1

Kt

Kt∑
k′=1

eih
>
k − lnKt. (12)

Definition 2 (Puzzlement): Given the ith item’s embedding
and all interest representations, the ith item’s puzzlement is
defined as:

P (i) =
1

Kt

Kt∑
k′=1

eih
>
k − ln

Kt∑
k′=1

eeih
>
k + lnKt, (13)

where Kt denotes the interests number in time span t, ei
denotes the embedding of the ith item and hk denotes the
representation of the kth interest.
In the implementation, we will create a predefined number of
new interest vectors if the average of all items’ puzzlement for
user u is larger than c1, which is formally defined as:

P (i) > c1, i ∈ Stu. (14)
The set of all these users is the puzzled set U tp. Here the c1
is the hyperparameter that controls the sensitivity of the new-
interests detector. We call this component for new-interests
detection as interests detector.

D. New-interests Expansion

The previous section uses puzzlement to detect whether the
user develops new interests. However, it is not enough because
we do not know how many new interests have been developed.
Intuitively, there are three ways to decide the number of new
interests. The first idea is to create just one interest capsule
if a new interest is detected each time. This way is easy to
implement, but it is not applicable when more than one interest
is developed. An improved idea is to create δK new interests
certainly. This way is also easy for implementation and more
applicable, but it may create too many unnecessary interests
in the later time spans and become a great burden to the
memory. Moreover, some new interest vectors learn redundant

1.0

0.6

0.2

-0.2

-0.6

-1.0

i1

i2

i3

i4

i5

i6

0.79 0.49 0.81

Ex
ist
in
g
In
te
re
st
s

L2-Norm

1 2 3

(a) User1

1.0

0.6

0.2

-0.2

-0.6

-1.0

i1

i2

i3

i4

i5

i6

0.12 0.74 0.92

Ex
ist
in
g
In
te
re
st
s

L2-Norm

1 2 3

(b) User2

Fig. 3. An illustration for two issues of new interests learned without
trimming. The upper parts show the Pearson correlation coefficients between
existing interests and new interests of two users. The bottom parts show the
L2-norm (Euclidean norm) of new interest vectors.

existing interests or even learn nothing. Here are two example
users from Taobao that both have 6 existing interests and 3
new learned interests by the model with fixed new-interests
expansion number, as shown in Figure 3. We compute the dot-
product similarities between interest k and ntu user’s interacted
item embeddings and maintain the similarity values for interest
k in pk = [pk,0, pk,1, · · · , pk,nt

u
]. For any two interests k and

j, we measure the Pearson correlation coefficient between
pk and pj , which is denoted as Pkj . L2-Norm denotes the
Euclidean norm of each new interest vector. Higher Pkj means
higher positive correlation and higher redundant extent for
these new interests such as User1’s new interest 1 and existing
interest 1. And the lower L2-norm means lower existence of
learned interests such as User2’s new interest 1.

We design a Projection-based Trimming mechanism which
enables the model to adjustably preserve the right number of
new interest vectors for each user which correspond to the
new interests developed in the new interaction sequence. The
main idea is that we only preserve the orthogonal part of new
interest vectors against existing interest vectors’ plane and
trim the new interest vectors with too small L2-norm. The
reasons are two-fold. First, if a new interest vector is close
to the existing interest vectors’ plane, it intuitively means it
represents an interest which is actually the combination of the
existing interests, and we do not need to create new vectors for
it. Second, the L2-norm of the vector represents the existence
of the semantic this interest contains in MSR literature [5],
[7], which means we can trim the vectors with too small L2-
norm because they just learn trivial interests or learn similar
interests against the existing ones.

Thus, we first create δK new random initialized new interest
vectors for each user u at time span t. The redundant multi-
interest user representation learnt by the extractor becomes:

Ht
u,rddt = (htu,1, · · · ,h

t
u,Kt ,htu,Kt+1, · · · ,h

t
u,Kt+δK),

(15)
where Ht

u,rddt ∈ Rd×(Kt+δK). δK is a hyperparameter
shared for all users in all time spans which controls the
interest expanding number. Thus, we employ a projection
action onto Ht

u,rddt. Specifically, we project all new interest
vectors htu,Kt+1, · · · ,h

t
u,Kt+δK onto the existing interest

vectors’ plane span(htu,1, · · · ,h
t
u,Kt). The projection can be

Algorithm 1: Interests Expansion (IntsEx)

Input : base model parameters {W t−1}base,
user interest vectors {Ht−1

u }u∈U ,
incremental dataset Dt

Output: user interest vectors{Ht
u}u∈U in time span t

1 for user u ∈ U do
2 for item i ∈ Stu do
3 P (i)← calculate the puzzlement by Eq.(13);
4 end
5 // detect new interests

6 if P (i) > c1, i ∈ Stu then
7 δKt

u ← [Kt−1
u + 1, · · · ,Kt−1

u + δK];
8 for interest vector k ∈ δKt

u do
9 initialize h0

k ← N (0, I)
10 end
11 Ht−1

u ←Ht−1
u ∪ (ht−1

Kt−1
u +1

, · · · ,ht−1
Kt−1

u +δK
);

12 Ht
u ←multi-interest extraction by Eq.(4) or

Eq.(9);
13 Ht

u,base ← interest projection by Eq.(16);
14 // trim trivial interests

15 Ht
u ←Ht

u\{h
t−1
k |‖h

(l),t
k ‖L2 < c2, k ∈ δKt

u}
Kt
u ← |H

t
u|

16 else
17 Ht

u ←multi-interest extraction by Eq.(4) or
Eq.(9);

18 end
19 end

calculated as:
ht,proju,k = M existM exist

>(M existM
>
exist)

−1htk, (16)

where M exist ∈ Rd×Kt

refers to the concatenation of
htu,Kt+1, · · · ,h

t
u,Kt+δK . In this way, only the component

orthogonal to the existing interests will be preserved in the
final new interest vector htk after multi-interest extraction.

For the last step, we will remove the new interest vectors
with trivial L2-norm using the following equation:

‖htk,proj‖L2 < c2. (17)
In this way, the Projection-based Trimming only preserves the
orthogonal and new interests with non-trivial existence. The
c2 is a hyperparameter that controls the strictness of trivial
interest trimming. We call this component for trimming the
redundancy interests as interests trimmer. The whole interests
expansion algorithm is presented in Algorithm 1.

E. Training and Inference Procedure

By integrating the interests retainer, interests detector and
interests trimmer components together, the whole training
process for incremental learning of MSR is as followed. For
each user u we initialize K0

u interest vectors. Then we pretrain
a base MSR model on all the user’s historical interaction
sequences. In this way, we obtain the K1

u interest vectors for
each user, and all the historical data can be discarded. For the

Algorithm 2: The IMSR approach

1 initialize base model parameters {W 0}base;
2 for user u ∈ U do
3 for interest vector k ∈ [1, · · · ,K0

u] do
4 initialize h0

k ← N (0, I)
5 end
6 end
7 {W t}base, {H1

u}u∈U ← pretrain the base model;
8 for time span t ∈ [2, · · ·T] do
9 {W t}base, {Ht

u}u∈U ← Training({W t−1}base,
{Ht−1

u }u∈U);
10 // inference
11 calculate the vtu on using Eq.(5);
12 for item i ∈ St+1

u do
13 calculate the inner-product of vtu and item

embedding as the item score;
14 end
15 end

16 Training({W t−1}base, {Ht−1
u }u∈U ,Dt):

17 for Epoch i ∈ [1, · · · r] do
18 // interests expansion
19 {Ht

u}u∈U ←
20 IntsEx({W t−1}base, {Ht−1

u }u∈U ,Dt);
21 // interests retention
22 LtSS ←get the sample softmax loss using Eq.(6);
23 LtKD ←get the knowledge distillation loss Eq.(10);
24 update {W t−1}base by optimizing LtSS + LtKD;
25 end
26 {W t}base ←{W t−1}base;
27 return {W t}base, {Ht

u}u∈U ;

time span 2, we have the new interaction sequence for each
user. Then we retrain the model for r epochs. First, we use
the interests detector on these new interactions to determine
which users have new interests, and we randomly initialize δK
interest vectors for each of these users. Second, we split the
user’s new interactions into two parts as historical sequences
and target items set in time order. For all the users not detected
new interests, we compute the user interest vector using multi-
interest extractor directly. For others who have new interests
detected, we use interests trimmer after the multi-interest
extractor to preserve the orthogonal part of new interests and
trim the new interests with trivial L2-norm. After this step,
we obtain K2

u interests for each user u. Third, we calculate
the sample softmax loss L2

SS by Eq.(6) and the knowledge
distillation loss L2

KD using the interests retainer. Then we use
backpropagation to update the parameters. For the next time
span, the procedure is identical. In the inference procedure, we
calculate the inner-product of vtu, which is obtained by Eq.(5),
and item embedding as the item score. Then we evaluate the
learned MSR models in the next time span. The pseudocode
for IMSR is provided in Algorithm 2.

F. Implementation Details

We implemented our proposed IMSR approach using Py-
torch 1.8.1 and trained on a 64-bit Linus server equipped
with 32 Intel Xeon@2.10GHz CPUs, 128GB memory, and
one Titan RTX 2080ti GPU. We choose 64 as the em-
bedding dimension of the item embeddings. The batch size
is set to 128. We choose the Adam optimizer [23] to
train the model and perform early stopping in the train-
ing process. The URL link to our code repository is:
https://github.com/Cloudcatcher888/IMSR.

V. EXPERIMENT

To evaluate the performance of our proposed IMSR frame-
work, we conduct extensive experiments to answer the follow-
ing research questions:
• RQ1 Can IMSR outperform the existing incremental learn-

ing strategies on multi-interest sequential recommendation?
• RQ2 How does each component of IMSR contribute to its

effectiveness?
• RQ3 How do the hyperparameters influence the perfor-

mance of IMSR?
• RQ4 Where do the improvements of IMSR come from?

A. Experimental Setup

1) Datasets: We use four real-world sequential recommen-
dation datasets from Amazon1 and Taobao2, which are adopted
by many existing MSR works [5], [6].
• Amazon: This dataset consists of reviews of different kinds

of products from Amazon [24], [25]. We consider three
categories of products and obtain Electronics, Clothing
and Books subsets. We use the item id and the UNIX review
time from the metadata.

• Taobao: The dataset is collected from the e-commerce
platform Taobao [26]. In our experiment, we only use the
click behaviors and sort one user’s behaviors by time.

For a fair comparison, we follow the same data preprocessing
and data splitting rule for all the approaches. We discard all
users with fewer than 30 interactions. The whole timeline
[0, Z] is split into T + 1 time spans, where the first time
span is [0, αZ] and [αZ,Z] is equally divided into T time
spans. We set T = 6 and α = 0.5 for all the datasets. Each
user interaction is assigned to the corresponding time span.
The interactions whose timestamps are in the range of [0, αZ]
compose the pre-training dataset, while the interactions in
the following T time spans are T incremental datasets. For
each user in each time span, we use the latest interaction
for testing, the second last interaction for validation, and all
the remaining interactions for training. For the full retaining
strategy, we use the pre-training dataset and 1th, 2th, ..., tth

incremental datasets to retrain model in the time span t. For
the incremental learning strategies (including IMSR), we use
the tth incremental dataset to fine-tune model in the time span
t. We test model on the (t + 1)th incremental dataset. We

1http://jmcauley.ucsd.edu/data/amazon/
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1

TABLE II
STATISTICS OF THE DATASETS.

Dataset #users #items #interactions
pre-training 1 2 3 4 5 6

Electronics 87,912 234,621 1,689,188 224,421 428,149 329,194 129,482 481,491 196,451
Clothing 285,464 376,859 5,748,920 864,371 574,922 957,329 1,134,792 943,422 1,274,084
Books 459,133 313,966 8,898,041 1,345,234 1,324,545 1,852,324 1,593,281 1,349,281 1,433,376
Taobao 976,779 1,708,530 85,384,110 12,329,481 14,481,123 22,129,123 9,329,128 14,238,129 12,877,126

have excluded the test performance of the pretrained model
(in 0th time span) and computed the average performance over
1th, 2th, ..., (T − 1)

th time spans. The statistics of the datasets
are listed in Table II.

2) Evaluation: We use the hit ratio (HR), and NDCG on
Top20 as the metrics to evaluate the performance of all the
comparison methods, which are commonly used in multi-
interest sequential recommendation [20], [27].

3) Base Models: We consider two dynamic-routing-based
MSR models and one self-attention-based MSR model, which
are listed as follows.
• MIND [5] is a typical dynamic-routing based model for

multi-interest sequential recommendation. It uses a simpli-
fied transformation matrix called shared bilinear mapping
matrix to extract multiple interest representations from user
interaction sequences. The routing logits are initialized
randomly. The default number of interest representations
Kt
u is set to 4.

• ComiRec-DR [6] is another dynamic-routing based model
for MSR. It uses a shared affine transformation matrix
to extract interest representations from user interaction
sequences. The routing logits are initialized as zero. The
default number of interest representations Kt

u is set to 4.
• ComiRec-SA [6] is a self-attention based model for MSR.

It employs a multi-head self-attention module to extract
interest representations from user interaction sequences,
where each head represents one interest. The default number
of heads Kt

u is set to 4.
We choose 64 as the dimension of interest representations for
all three models on all the datasets.

4) Compared Learning Strategies: We compare our pro-
posed IMSR with the full retraining strategy and three existing
incremental learning strategies on the above three base models.
• Full retraining (FR) In each time span, all the model

parameters will be reinitialized and the whole user historical
interaction sequences will be used to retrain the base model.
The interests number will be kept same as IMSR .

• Fine-tuning (FT) In each time span, all the parameters will
be inherited from the previous time span and only the newly
collected user interactions will be used to fine-tune the base
model.

• SML [28] is a model-based incremental learning approach
that employs a CNN-based transfer module to leverage the
previous model knowledge while training the current model
on Dt. We use 5 × 5 filters. The best results are reported
by choosing the number of CNN filters in {2, 5, 8, 10} and
the MLP hidden size in {10, 20, 40, 80}.

• ADER [9] is a sample-based incremental learning approach
for the session-based recommendation that samples histor-
ical interaction sessions from a session pool according to
cosine similarity with the newly collected sessions as the
complementary set for new sessions, which is useful to
preserve the user’s long-term interests. We add 5 randomly
truncated interaction sequences to the session pool for each
user in each time span.

For a fair comparison, all compared learning methods are
optimized with the loss function in Eq. (6). The regularization
coefficient for LKD is tuned in {1e−2, 1e−3, · · · , 1e−6, 0}.
The learning rate is tuned in {0.1, 0.01, 0.005, 0, 001}. The
incremental training epoch is tuned in {5, 10, 15, 20, 30, 50}.

B. Experimental Results: RQ1

1) Performance Comparison: Table III provides the per-
formance comparison results of different methods on four
datasets.Each result is averaged by 10 repeated experiments.

We have the following observations. Table III shows SML
and ADER outperform FT in most scenarios. The reason is that
they both partially preserve the existing interests by sampling
truncated historical interaction sequences (ADER) or trans-
ferring knowledge from previous model parameters (SML).
However, their performances are inferior to FR, which lever-
ages the whole user interaction sequences. Table III shows
IMSR achieves 3.77%, 3.89%, 4.21%, 4.76% relative improve-
ments on NDCG compared to the second best incremental
learning methods on four datasets (averaged on three base
models), respectively. The reason for the performance im-
provement is that IMSR can capture new interests with NID
and PIT while SML and ADER do not expand the model
capacity over time. Moreover, the performance improvements
on different base models are close, which reflects that IMSR is
effective in performing incremental multi-interest recommen-
dation on different kinds of MSR models. Figure 4 gives
the detailed performance trends of different methods over
time spans using ComiRec-DR (similar trends can be found
on other base models). The performance of FT decreases
significantly over time spans. The results of SML and ADER
also drop fast, which also testifies that SML and ADER
cannot losslessly preserve existing interests from historical
interactions. Moreover, the result of IMSR drops slightly faster
than FR by only using the newly collected interactions thanks
to the new-interests expansion mechanism, which alleviates
the existing interests forgetting problem. Figure 4 shows that
the performances of all the compared incremental learning
methods become worse on Taobao except IMSR. The reason is
that Taobao has more items and users’ interests change more

TABLE III
THE PERFORMANCE COMPARISON RESULTS. * DENOTES p < 0.05 WHEN PERFORMING THE TWO-TAILED PAIRWISE T-TEST ON IMSR WITH THE

INCREMENTAL LEARNING METHODS (SML OR ADER). THE BOLD AND THE UNDERLINE SHOW THE BEST AND SECOND-BEST RESULTS WITHIN FOUR
INCREMENTAL LEARNING METHODS, RESPECTIVELY. RI INDICATES A RELATIVE IMPROVEMENT OF THE AVERAGE SCORE OF HR AND NDCG AGAINST

FT. ALL THE NUMBERS IN THE TABLE ARE PERCENTAGE NUMBERS WITH ‘%’ OMITTED.

Base model Learning method Electionics Clothings Books Taobao
HR NDCG RI HR NDCG RI HR NDCG RI HR NDCG RI

MIND

FR 16.03 16.43 11.15 16.23 15.98 10.57 13.82 11.95 10.47 43.29 24.90 2.63
FT 14.75 14.46 - 14.45 14.68 - 12.34 10.98 - 42.09 24.35 -

SML 15.41 15.17 4.71 15.27 14.81 3.26 13.12 11.12 3.97 42.88 24.58 1.54
ADER 15.64 14.98 4.84 15.62 15.20 5.76 12.92 11.48 4.64 42.90 24.24 1.05
IMSR 15.81* 15.71* 7.93 15.81* 15.71* 8.19 13.99* 11.94* 11.18 43.94* 25.66* 4.76

ComiRec-DR

FR 17.00 16.79 9.85 16.91 16.75 9.82 14.79 12.79 12.06 44.29 25.87 4.23
FT 15.41 15.35 - 15.36 15.28 - 13.30 11.30 - 42.62 24.68 -

SML 16.16 15.85 4.09 16.08 15.77 3.92 13.92 11.85 4.74 43.28 24.89 1.28
ADER 16.12 15.90 4.10 16.02 15.84 3.96 13.73 11.96 4.43 43.44 25.00 1.68
IMSR 16.80* 16.48* 8.20 16.74* 16.47* 8.38 14.46* 12.48* 9.51 44.48* 26.00* 4.72

ComiRec-SA

FR 17.15 16.95 10.82 16.74 16.87 8.83 14.86 12.85 11.66 44.31 25.75 4.54
FT 15.31 15.46 - 15.49 15.39 - 13.46 11.35 - 42.44 24.58 -

SML 15.96 15.99 3.83 15.90 15.88 2.89 13.78 11.71 2.72 43.17 24.83 1.47
ADER 16.32 15.88 4.63 16.14 15.88 3.67 13.55 11.98 2.87 43.43 25.00 2.12
IMSR 16.97* 16.32* 8.19 16.94* 16.56* 8.45 14.38* 12.49* 8.30 44.58* 26.11* 5.48

FT FR SML ADER IMSR

0 1 2 3 4 5
time span

0.150
0.155
0.160
0.165
0.170
0.175
0.180

H
R

(a) Electronics-HR

0 1 2 3 4 5
time span

0.150
0.155
0.160
0.165
0.170
0.175

H
R

(b) Clothing-HR

0 1 2 3 4 5
time span

0.130
0.135
0.140
0.145
0.150
0.155

H
R

(c) Books-HR

0 1 2 3 4 5
time span

0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455

H
R

(d) Taobao-HR

0 1 2 3 4 5
time span

0.155
0.160
0.165
0.170
0.175

N
D

C
G

(e) Electronics-NDCG

0 1 2 3 4 5
time span

0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180

N
D

C
G

(f) Clothing-NDCG

0 1 2 3 4 5
time span

0.110
0.115
0.120
0.125
0.130
0.135

N
D

C
G

(g) Books-NDCG

0 1 2 3 4 5
time span

0.240
0.245
0.250
0.255
0.260
0.265
0.270

N
D

C
G

(h) Taobao-NDCG
Fig. 4. HR and NDCG on each time span.

TABLE IV
THE PERFORMANCE COMPARISON RESULTS BETWEEN IMSR AND

LIFE-LONG MSR MODELS. THE AVERAGE HR OVER 5 TIME SPANS ARE
REPORTED.

Datasets Electronics Clothings Books Taobao

MIMN 14.11 14.37 11.87 41.02
LimaRec 15.31 15.02 13.07 42.33

IMSR (ComiRec-DR) 16.81 16.68 14.48 44.35

rapidly, which will amplify the superiority of IMSR with the
capability of new-interests expansion. Table IV provides the
HR results between IMSR based on ComiRec-DR and life-
long MSR models (includes MIMN [8] and LimaRec [7]).
MIMN adopts Neural Turing Machine to adaptively read
or write user interests according to the online interactions.
LimaRec employs linear self-attention to identify relevant
information from users’ interaction sequences with different
interests. These two works differ from ours in the sense that
they focus on incrementally updating users’ representations
during online inference and do not provide an incremental

learning method for MSR model updating. On average, IMSR
achieves 3.61%, 2.89%, 5.12%, 4.47% relative improvements
on HR compared to the best life-long MSR model (LimaRec)
on the four datasets, respectively. We observe that the life-
long MSR models perform inferior to IMSR because they only
update user representations but do not update the model pa-
rameters after pretraining. Another reason for the performance
gap is that life-long MSR models use fixed number of interests
while IMSR can adaptively create vectors to capture newly
evolved interests.

2) Speed-up: We compare the training time of different
methods at different time spans and average inference time
over all time spans. Table V shows the time cost on Taobao.
Similar conclusions can be drawn from the other datasets.
The training time of FR (on MIND and ComiRec-DR) and
ADER grows linearly due to the increasing lengths of inter-
action sequences or the larger pool size of truncated historical
interaction sequences. The training time of FR on ComiRec-
SA increases more rapidly because the self-attention module

TABLE V
TRAINING/INFERENCE TIME (IN SECONDS) ON TAOBAO DATASET.

Base
Model

Learning
Method

t=1 t=2 t=3 t=4 t=5
Average

Inference Time

MIND

FR 4,671 4,877 4,891 5,189 5,382

0.15FT 738 819 802 822 799
SML 908 922 941 913 902

ADER 982 1,154 1,379 1,534 1,712

IMSR 811 832 851 804 823 0.17

ComiRec-DR

FR 5,472 5,693 5,871 5,902 6,023

0.17FT 928 949 932 941 946
SML 1,052 1,098 1,079 1,073 1,081

ADER 990 1,199 1,499 1,591 1,891

IMSR 941 962 954 994 983 0.21

ComiRec-SA

FR 5,569 6,214 7,112 8,219 9,401

0.31FT 972 991 992 1,001 982
SML 1,111 1,121 1,141 1,101 1,102

ADER 1,054 1,231 1,529 1,681 1,952

IMSR 1,012 1,031 1,041 1,104 1,083 0.33

FT
IMSR w/o NID/PIT

IMSR w/o EIR
IMSR(DIR)

IMSR(KD1)
IMSR(KD2)

IMSR(KD3)
IMSR

0 1 2 3 4 5
time span

0.130
0.135
0.140
0.145
0.150
0.155

H
R

(a) Books-ComiRec-DR

0 1 2 3 4 5
time span

0.130
0.135
0.140
0.145
0.150

H
R

(b) Books-ComiRec-SA

0 1 2 3 4 5
time span

0.42

0.43

0.44

0.45

0.46

H
R

(c) Taobao-ComiRec-DR

0 1 2 3 4 5
time span

0.42

0.43

0.44

0.45

0.46

H
R

(d) Taobao-ComiRec-SA

Fig. 5. Ablation Study on Books and Taobao.

has quadratic time complexity. The training time of SML is
stable across different time spans because it does not vary the
model capacity. However, SML requires longer training time
in each time span due to the high computational complexity
of its meta-learner. IMSR is about 6 times faster than FR (on
MIND and ComiRec-DR), and the retraining time is stable
across different time spans. The IMSR uses 3.5% extra training
time compared with FT to achieve significant performance
improvement. We find the inference time depends on both the
base model and the number of interests, where IMSR takes
slightly longer inference time (at the 100ms level per instance)
due to the adaptive number of interests.
C. Ablation Study: RQ2

We perform an ablation study on the two largest datasets,
Books and Taobao, using ComiRec-DR/SA to evaluate the ef-
fects of different components in IMSR on the recommendation
performance. Specifically, we consider the following variants.
• FT: Using the base model with FT as the training method.
• IMSR w/o NID&PIT: Removing NID and PIT from IMSR.
• IMSR w/o EIR: Removing the EIR module from IMSR.

• IMSR(DIR): Replacing the EIR with the DIR for interest
retention, which changes the Eq. (10) with the Euclidean
distance-based regularization term [18].

• IMSR(KD1/KD2/KD3): Replacing Eq. (10) with three
softmax-based distillation losses [21], [29], [30] to evaluate
the effects of different distillation losses on the recommen-
dation performance.

As shown in Figure 5, IMSR performs best among all the
comparison methods both on DR and SA models, which shows
that the removal of any component from IMSR will hurt the
final performance, and the contribution of all three components
is insensitive to the base model. On Taobao, the effectiveness
of the NID and PIT is significant, which reflects that users
in Taobao develop new interests fast due to the richness of
item categories. Specifically, we observe the average interests
number of all users in Taobao increases from 4.0 to 9.2 with
IMSR. However, on Books, the effectiveness of the EIR is
more significant, which reflects that users’ interests in books
are more stable, and it is more important to preserve users’
existing interests. As evidence, the average interests number
of all users in Books only increases from 4.0 to 5.6 with
IMSR. On Books, the removal of EIR makes the performance
of IMSR even inferior to FT. The performance decrease is also
significant on Taobao. This reflects that preserving existing
interests is the foundation for new-interests detection. We can
see that using a distance-based regularization term for interest
retention has the inferior performance to using knowledge-
distillation-based regularization. We also find IMSR(DIR) per-
forms worse on items which do not exactly match with existing
interests. For instance, IMSR(DIR) fails to recommend smart-
phones for a user who used to be interested in flip phones,
while IMSR works. The above two observations show that
EIR is more flexible than DIR on existing interests preserving.
Nevertheless, different kinds of knowledge distillation terms
achieve similar performance, which testifies that our method
is insensitive to the choice of the distillation loss function.

D. Parameter Sensitivity: RQ3

We investigate the sensitivity of the puzzlement threshold
c1 in new-interests detection and L2-norm threshold c2 in
projection-based interest trimming on IMSR performance to-
gether with different values of K for initial interests and the
different values of δK for newly created interests. We choose
the ComiRec-DR/SA as the base models and test on Books
and Taobao two datasets. Similar conclusions can be drawn
from other datasets and base models.

1) Hyperparameters c1 and c2: We first vary the value of
c1 in {0.02, 0.04, 0.06, 0.08, 0.10, 0.12} and c2 is set to 0.3 on
both datasets. As shown in Figure 6, the model achieves the
highest performance with moderate values of c1 in most cases
because too large c1 prevents the creation of the new interest.
Then we vary the value of c2 in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
and c1 is set to 0.04/0.06 on Books and Taobao respectively.
In Figure 6, the model achieves the highest performance also
with moderate values of c2 in most cases because too small
c2 prevents the trivial interests from trimming.

K=4, K=1 K=4, K=3 K=6, K=1 K=6, K=3 K=19, K=0 K=21, K=0

0.02 0.04 0.06 0.08 0.10 0.12
c1(c2=0.3)

0.130

0.135

0.140

0.145
H

R

(a) Books-DR-c1

0.02 0.04 0.06 0.08 0.10 0.12
c1(c2=0.3)

0.130

0.135

0.140

0.145

H
R

(b) Books-SA-c1

0.1 0.2 0.3 0.4 0.5 0.6
c2(c1=0.06)

0.130

0.135

0.140

0.145

H
R

(c) Books-DR-c2

0.1 0.2 0.3 0.4 0.5 0.6
c2(c1=0.06)

0.130

0.135

0.140

0.145

H
R

(d) Books-SA-c2

0.02 0.04 0.06 0.08 0.10 0.12
c1(c2=0.3)

0.425

0.430

0.435

0.440

0.445

H
R

(e) Taobao-DR-c1

0.02 0.04 0.06 0.08 0.10 0.12
c1(c2=0.3)

0.430

0.435

0.440

0.445

H
R

(f) Taobao-SA-c1

0.1 0.2 0.3 0.4 0.5 0.6
c2(c1=0.04)

0.425

0.430

0.435

0.440

0.445

H
R

(g) Taobao-DR-c2

0.1 0.2 0.3 0.4 0.5 0.6
c2(c1=0.04)

0.430

0.435

0.440

0.445

H
R

(h) Taobao-SA-c2
Fig. 6. Performance with different c1,c2, initial K numbers and δK numbers on Books and Taobao datasets.

35

37

39

41

43

45

47

49

old itemsnew items original

H
R/
%

FR FT IMSR

(a)

1
2
3
4
5
6

(b)

1.0

0.8

0.6

0.4

0.2

0.0

i0

i1

i2

i3

i4

i5

i6

i7

t0

t2

t3

t5

(c)

Fig. 7. Three case studies. (a) Performance of FR, FT and IMSR of 5th time
span in Taobao grouped by three item types: only existing items, only new
items and the original datasets. (b) t-SNE visualization of one user’s interest
evolution among different time spans. (c) Heatmap of dot-products between
each interest i(j) created in time span t(i) of a user and target items in the
last time span.

2) Interests Number K and δK: The value of K and δK
are chosen from {(4, 1), (4, 3), (6, 1), (6, 3), (19, 0), (21, 0)},
where K = 19, δK = 0 and K = 21, δK = 0 equal to the
settings where we create all the interest vectors in advance
at the pre-training stage for IMSR with K = 4, δK = 3
and K = 6, δK = 3, respectively. As shown in Figure 6,
IMSR with δK = 3 reports higher results than δK = 1,
which shows user may develop multiple interests in a new
time span. IMSR achieves higher HR values when K = 6 on
Taobao, probably because users generally have more interests
in Taobao. We also find that the highest performance for
K = 4 and δK = 1 is achieved at smaller c1 or c2
probably because K, δK are relatively small and we need
more loose interest expansion pattern controlled by c1 and
c2. The performance of IMSR with K = 19, δK = 0 and
K = 21, δK = 0 is far below the performance of IMSR with
K = 4/6, δK = 1/3, which confirms the effectiveness of
using interests expansion strategy and shows that the model
suffer when we create too many interest vectors in advance.

E. Case Study: RQ4

Finally, we perform three case studies to illustrate the
advantages of IMSR compared with FR and FT, and visualize
user’s interest vectors to interpret their rationality. We use
ComiRec-DR model for demonstration.

1) Performance Difference for New/Existing Items: We
divide the items of one time span in Taobao into two types:
existing item includes the items that the user has interacted
with in previous time spans; new item is an item the cor-
responding user newly interacts with in this time span. The
two treatment groups are: only testing on new items; only
testing on existing items. The original group is the control
group. We can see that FR performs better on existing items
because it uses all existing items for retraining. FT heavily
forgets the existing items but performs best on new items.
IMSR compromises between the preservation of the existing
items and new items detection, which achieves convincing
performance in both treatment groups.

2) Visualization of User’s Interest Vectors: We sample one
user and visualize his/her interest vector evolution among the
six time spans of Taobao in Figure 7(b) by t-SNE. Different
colors correspond to different time spans. In time span 0 (the
purple scalars), the user has only 4 interests. In time span 1 (the
light green scalars), the user generates 3 new interests in new
places, and the 4 existing interests remain in their original
places. In later time spans, We can also see that different
interests in the same time span are mostly located in different
places, which reflects the effectiveness of PIT and NID in
preventing learning redundant interests. Vectors of the same
interest in different time spans linked with red dashes locate
quite closely, which shows that EIR prevents the preserved
interests from drifting from the original places dramatically.
We also provide a case study to show the necessity of retaining
all existing interests discussed in the introduction. Typical
MSR models (described in Section III) calculate the dot-
product similarity as an attention score between each interest
vector hk and target item’s embedding ea, and perform
weighted sum over all interests as the final user representation.
To this end, MSR models can adaptively assign importance
to interests for recommendation. The higher attention score
between interest hk and target item’s embedding ea means
the higher importance of interest k for recommending target
item ia. Among all the attention scores over interests and target

items in the last time span for each user in the Taobao dataset
calculated by ComiRec-DR, we find more than 50%/60% users
bought items which have the highest attention scores with the
interests developed in the first/second time span. Hence, it is
beneficial to retain all existing interests including early ones.
Figure 1 presents the heatmap of one user where some early
interests still have high attention scores with the target items
in the last time span, which shows early interests are also
valuable for recommending the items in later time spans.

VI. RELATED WORK

A. Multi-interest Sequential Recommendation

In recent years, there is a growing number of works re-
searching personalized recommendations [1], [2], [4], [31]–
[34]. One species of them typically attempts to learn user rep-
resentations from historical user interaction sequences, which
is referred to as sequential recommendation.

Recently, some researchers have utilized capsule networks
or self-attention to capture users’ diverse interests to solve this
problem. The capsule network [19] was firstly used for image
classification. It uses vectorized capsules to replace scalar
neurons in neural networks and employs the dynamic routing
mechanism based on a similarity metric to form capsules.
Inspired by the high expressiveness of capsule networks,
MIND [5] performs dynamic routing to extract users’ high-
level multi-interest capsules from the raw user interaction
sequence for item recommendation. ComiRec [6] implement
both capsule-network-based and self-attention-based sequence
recommendation model, which optimizes the dynamic routing
process in MIND and introduces a controllable method for
interest selection. Unfortunately, existing capsule-network-
based methods cannot preserve the sequential order among
interactions and lack the ability to utilize temporal information
for sequential recommendation.

Note that a recent work called LimaRec [7] employs linear
self-attention to identify relevant information from users’
interaction sequences with different interests. This work differs
from ours in the sense that LimaRec focuses on incrementally
updating users’ representations for online inference. LimaRec
does not provide an incremental strategy for MSR model
updating and still needs to fully retrain the model using the
entire historical interaction sequence periodically.

B. Incremental Learning for Recommendation

Practical recommender systems need to periodically retrain
recommendation models. It is often desirable to retrain the
model on both historical and new interaction data to cap-
ture long-term and short-term user interests. However, full
retraining would be very time-consuming and incur high
memory cost, especially when the scale of historical data
is large. To address the problem, a more cost-effective way
is to perform incremental learning with new interactions in
each time span [35]–[37]. The ultimate goal of performing
incremental learning is to update model parameters only with
newly collected interactions and still achieve competitive per-
formance as compared with full retraining. The main challenge

of incremental learning is to solve the catastrophic forgetting
problem, which means the model will perform worse on
existing data samples after training on new datasets. There
are two groups of incremental methods: model-based methods
and sample-based methods. The model-based methods’ main
idea is to add some regularization on the loss function of new
tasks to protect the existing knowledge from forgetting. Most
of these kinds of methods do not require existing datasets for
the model to review. The sample-based method focuses on
which part of existing datasets should be preserved and how
to combine the existing and new datasets for model training. In
the recommendation literature, several methods have been pro-
posed for incremental model training [38], [39]. For instance,
MAN [11] uses a memory augmented neural model for the
incremental session-based recommendation, which memorizes
a subset of testing data to enrich the training datasets on the
interfere stage. However, among all these incremental methods
for recommendation, there are no specialized incremental
strategies for sequential recommendation.

Another group of works focus on incrementally updating
users’ representations based on real-time interactions during
online inference. Zhou et al. [40] proposed an expansion
technique on each user’s interests to generate diverse recom-
mendation results based on streaming interaction data. Zhou
et al. [41] introduced an algorithm for efficiently performing
social updates in dynamic shared communities by checking
the status of each sub-community and its interactions with
other sub-communities. The above two works both need to
fully retrain the model using all historical interactions period-
ically. Different from these works, we focus on updating both
the interests number and model parameters using the newly
collected interaction data during offline training.

VII. CONCLUSION

In this work, we show how the existing multi-interest se-
quential recommender system can be deployed in incremental
scenarios by using fine-tuning strategies. Furthermore, we
propose an incremental learning framework for multi-interest
sequential recommendation named IMSR, which augments
the base dynamic routing or self-attention-based MSR models
with the existing-interests retainer (EIR), new-interests detec-
tor (NID), and projection-based interests trimmer (PIT) to alle-
viate the existing-interests forgetting problem and adaptively
increase the number of the interests. Extensive experiments
verify the effectiveness of the proposed IMSR on four real-
world datasets, compared with the baseline methods.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous review-
ers for their insightful reviews. This work is supported by
the National Key Research and Development Program of
China (2022YFE0200500), Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0102), the Tencent
Wechat Rhino-Bird Focused Research Program, and SJTU
Global Strategic Partnership Fund (2021 SJTU-HKUST).

REFERENCES

[1] J. He, J. Qi, and K. Ramamohanarao, “A Joint Context-Aware Em-
bedding for Trip Recommendations,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE), vol. 00, 2019, pp. 292–303.

[2] Y. Chang, C. Zhai, Y. Liu, Y. Maarek, J. Tang, and K. Wang, “Person-
alized Top-N Sequential Recommendation via Convolutional Sequence
Embedding,” Arxiv, pp. 565–573, 2018.

[3] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai,
“Deep Interest Evolution Network for Click-Through Rate Prediction,”
in AAAI, 2018, pp. 5941–5948.

[4] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
Recommendations with Recurrent Neural Networks,” arXiv, 2015.

[5] C. Li, Z. Liu, M. Wu, Y. Xu, P. Huang, H. Zhao, G. Kang, Q. Chen,
W. Li, and D. L. Lee, “Multi-Interest Network with Dynamic Routing
for Recommendation at Tmall,” in Proceedings of the 28th ACM
International Conference on Information & Knowledge Management,
2019.

[6] Y. Cen, J. Zhang, X. Zou, C. Zhou, H. Yang, and J. Tang, “Controllable
Multi-Interest Framework for Recommendation,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2020.

[7] Y. Wu, L. Yin, D. Lian, M. Yin, N. Z. Gong, J. Zhou, and H. Yang,
“Rethinking Lifelong Sequential Recommendation with Incremental
Multi-Interest Attention,” arXiv, 2021.

[8] A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi, G. Karypis,
Q. Pi, W. Bian, G. Zhou, X. Zhu, and K. Gai, “Practice on Long
Sequential User Behavior Modeling for Click-Through Rate Prediction,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 7 2019, pp. 2671–2679.

[9] F. Mi, X. Lin, and B. Faltings, “ADER: Adaptively Distilled Exemplar
Replay Towards Continual Learning for Session-based Recommenda-
tion,” arXiv, 2020.

[10] Y. Wang, H. Guo, R. Tang, Z. Liu, and X. He, “A Practical Incremental
Method to Train Deep CTR Models,” arXiv, 2020.

[11] F. Mi and B. Faltings, “Memory Augmented Neural Model for Incre-
mental Session-based Recommendation,” in Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, 2020, pp.
2169–2176.

[12] J. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J.-R. Wen, Y. Liu,
Y. Zhang, F. Feng, C. Wang, X. He, M. Wang, Y. Li, and Y. Zhang,
“How to Retrain Recommender System? A Sequential Meta-Learning
Method,” Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 1479–1488,
2020.

[13] D. Peng, S. J. Pan, J. Zhang, and A. Zeng, “Learning an Adaptive Meta
Model-Generator for Incrementally Updating Recommender Systems,”
pp. 411–421, 2021.

[14] C. Simon, P. Koniusz, R. Nock, and M. Harandi, “Adaptive Subspaces
for Few-Shot Learning,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 00, 2020, pp. 4135–4144.

[15] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive Neural
Networks,” arXiv, 2016.

[16] T. Chen, I. Goodfellow, and J. Shlens, “Net2Net: Accelerating Learning
via Knowledge Transfer,” arXiv, 2015.

[17] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert Gate: Lifelong
Learning with a Network of Experts,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 7120–
7129.

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” arXiv, 2015.

[19] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic Routing Between
Capsules,” arXiv, 2017.

[20] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “BERT4Rec:
Sequential Recommendation with Bidirectional Encoder Representations
from Transformer,” in Proceedings of the 28th ACM International
Conference on Information & Knowledge Management, 2019.

[21] Z. Li and D. Hoiem, “Learning without Forgetting,” arXiv, 2016.
[22] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,

“Informer: Beyond Efficient Transformer for Long Sequence Time-
Series Forecasting,” arXiv, 2020.

[23] J. L. B. Diederik P. Kingma, “Adam: A Method for Stochastic Opti-
mization,” in ICLR, 2015, pp. 785–794.

[24] J. McAuley, C. Targett, Q. Shi, and A. v. d. Hengel, “Image-Based
Recommendations on Styles and Substitutes,” pp. 43–52, 2015.

[25] J. Bourdeau, J. A. Hendler, R. N. Nkambou, I. Horrocks, B. Y. Zhao,
R. He, and J. McAuley, “Ups and Downs: Modeling the Visual Evolution
of Fashion Trends with One-Class Collaborative Filtering,” WWW, pp.
507–517, 2016.

[26] Y. Guo, F. Farooq, H. Zhu, X. Li, P. Zhang, G. Li, J. He, H. Li, and
K. Gai, “Learning Tree-based Deep Model for Recommender Systems,”
KDD, pp. 1079–1088, 2018.

[27] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, “Personaliz-
ing Session-based Recommendations with Hierarchical Recurrent Neural
Networks,” RecSys, 2017.

[28] J. Huang, Y. Chang, and X. Cheng, “How to Retrain Recommender
System? A Sequential Meta-Learning Method,” Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 1479–1488, 2020.

[29] A. Cheraghian, S. Rahman, P. Fang, S. K. Roy, L. Petersson, and
M. Harandi, “Semantic-aware Knowledge Distillation for Few-Shot
Class-Incremental Learning,” arXiv, 2021.

[30] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large
Scale Incremental Learning,” arXiv, 2019.

[31] J. Zhang, C. Gao, D. Jin, and Y. Li, “Group-Buying Recommendation
for Social E-Commerce,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE), vol. 00, 2021, pp. 1536–1547.

[32] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized Markov chains for next-basket recommendation,” WWW,
pp. 811–820, 2010.

[33] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng, “Learning
Hierarchical Representation Model for NextBasket Recommendation,”
SIGIR, pp. 403–412, 2015.

[34] R. He and J. McAuley, “Fusing Similarity Models with Markov Chains
for Sparse Sequential Recommendation,” arXiv, 2016.

[35] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neural Networks, vol.
113, pp. 54–71, 2019.

[36] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, “Mea-
suring Catastrophic Forgetting in Neural Networks,” in AAAI, 2017.

[37] X. Liu, M. Masana, L. Herranz, J. V. d. Weijer, A. M. Lopez, and
A. D. Bagdanov, “Rotate your Networks: Better Weight Consolidation
and Less Catastrophic Forgetting,” arXiv, 2018.

[38] Y. Tang, K. Guo, R. Zhang, T. Xu, J. Ma, and T. Chi, “ICFR: An effective
incremental collaborative filtering based recommendation architecture
for personalized websites,” in World Wide Web, vol. 23, no. 2, 2020, pp.
1319–1340.

[39] F. Yuan, G. Zhang, A. Karatzoglou, J. Jose, B. Kong, and Y. Li, “One
Person, One Model, One World: Learning Continual User Representation
without Forgetting,” in Proceedings of the 43nd International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
2020.

[40] X. Zhou, L. Chen, Y. Zhang, L. Cao, G. Huang, and C. Wang, “Online
Video Recommendation in Sharing Community,” in Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data,
5 2015, pp. 1645–1656.

[41] X. Zhou, D. Qin, X. Lu, L. Chen, and Y. Zhang, “Online social
media recommendation over streams,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE), 2019, pp. 938–949.

